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Abstract— Anticipating and adapting to failures is a key
capability robots need to collaborate effectively with humans
in complex domains. This continues to be a challenge despite the
impressive performance of state of the art AI planning systems
and Large Language Models (LLMs) because of the uncer-
tainty associated with the tasks and their outcomes. Toward
addressing this challenge, we present a hybrid framework that
integrates the generic prediction capabilities of an LLM with
the probabilistic sequential decision-making capability of Re-
lational Dynamic Influence Diagram Language. For any given
task, the robot reasons about the task and the capabilities of
the human attempting to complete it; predicts potential failures
due to lack of ability (in the human) or lack of relevant domain
objects; and executes actions to prevent such failures or recover
from them. Experimental evaluation in the VirtualHome 3D
simulation environment demonstrates substantial improvement
in performance compared with state of the art baselines.

Index Terms— Human-Robot Collaboration, Probabilistic
Planning, Task Adaptation, Assistive Robotics

1 INTRODUCTION

Consider a robot assisting an elderly human in a kitchen,
say with fetching a glass of water from the sink to the
kitchen counter. Due to mobility and stability limitations,
there is uncertainty about whether the human can complete
the task successfully; they may end up dropping the water
glass. We expect the robot to anticipate the potential for such
negative outcomes, i.e., the glass being dropped, and either
prevent this negative outcome, e.g., by fetching the water
glass, or prepare to deal with the outcome, e.g., by making
sure it has access to the mop needed to clear the water
spill. Figure 1 shows some snapshots of these scenarios.
State of the art methods for robot planning and human-robot
collaboration assume deterministic environments (e.g., with
classical planners [1], [2]), or pre-compute and use reactive
policies (e.g., with probabilistic planners [3]), and do not
fully support the desired proactive decision-making behavior.

The hybrid framework™ presented in this paper is inspired
by the observation that the desired adaptive behavior needs
the ability to anticipate tasks, identify potential failures while
executing actions to complete these tasks with a human, and
to plan actions that prevent failures or help recover from
them. Specifically, the framework enables the robot to:

o Adapt a pretrained Large Language Model (LLM) to
anticipate future tasks and convert a description of
uncertainty in task outcomes to model parameters of
a stochastic planning problem.
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Fig. 1: Illustrative task of fetching a glass of water from
the sink to the kitchen counter. In the baseline scenario, the
human may end up dropping the water glass due to stability
issues. Our framework enables the robot to anticipate such
failures; it either prevents the failure by completing the task,
or prepares to recover from the failure by fetching a mop
that can be used to clean the potential water spill.

o Use the Relational Dynamic Influence Diagram Lan-
guage (RDDL) to encode and solve the stochastic
planning problem, computing a sequence of actions to
jointly achieve the current and upcoming tasks.

e Encode and reason with a reward mechanism that
trades-off task completion probability with the effort
needed to prevent or recover from potential failures.

Our key contribution is the smooth integration of the com-
plementary strengths of the three components, i.e., LLM-
based task anticipation, RDDL-based probabilistic planning,
and proactive failure handling. We experimentally evaluate
our framework in the context of human-robot collaboration
in household tasks in the realistic VirtualHome simulation
environment. We demonstrate an increase in task completion
accuracy and a reduction in the number of failures, leading
to improved human-robot collaboration compared with base-
lines that just use an LLM or a probabilistic planner.

2 RELATED WORK

There is an extensive body of research in Human-robot
interaction (HRI), including recent advances in shared au-
tonomy and collaborative task execution [4], [5]. Despite
impressive advancements in perception, reasoning, and learn-
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ing, adaptation to failures and collaboration between humans
and robots continue to be open problems [6], [7].

Reasoning tasks such as planning and diagnostics have often
been addressed by encoding prior domain knowledge as
relational logic statements in an action language such as
Planning Domain Definition Language (PDDL) [8] and using
suitable solvers. Other languages such as RDDL [9] help
model a class problems that are difficult to model with
probabilistic extensions of PDDL (e.g, due to stochastic
effects and unrestricted concurrency). Its semantics are that
of a ground Dynamic Bayesian Network, and it can be
used for both classical planning and probabilistic sequential
decision making (e.g., Markov Decision Process, MDP; Par-
tially Observable MDP, POMDP). It supports both classical
tree search planners like PROST [10] and learning-based
approaches in RDDL-Gym.

In an attempt to reduce the effort involved in encoding
domain knowledge, recent research has explored the use
of data-driven frameworks such as LLMs for computing
plans [11]. The ability of LLMs to predict action sequences
to complete tasks has led to claims about their ability to
plan and reason [12], [13], although they do not build the
models needed for reasoning and their operation does not
match the directed search operation involved in planning.
There is increasing experimental evidence demonstrating the
tendency of LLMs to provide arbitrary responses in novel
situations [14], advocating their use in planning frameworks
for auxiliary tasks such as knowledge translation [15], task
anticipation [16], [17], and goal allocation [18].

Robust Human-Robot Collaboration (HRC) requires the
ability to deal with action failures. Planning methods can
monitor and adapt to deviations in action outcomes [19]
using behavior models encoded in PDDL domains [20] or
probabilistic sequential decision making [21]. In the context
of probabilistic sequential decision making, existing methods
support adaptation to changes in the domain [22], learned
models [23], and human behavior [24].

Despite the existing work, the desired proactive behavior
that anticipates failures, and either prevents them or pre-
pares to recover from them, continue to be a problem of
interest. We seek to address this problem by leveraging
the complementary strengths of knowledge-based and data-
driven systems. Specifically, our hybrid framework combines
the generic prediction capability of LLM, the probabilistic
planning capability of RDDL, and a reward mechanism to
trade off between task completion and failure recovery.

3  PROBLEM FORMULATION AND FRAMEWORK

Consider a home environment with a human H and an
assistive robot R collaborating to complete a given task
specified as the goal G. The sequence of high-level tasks
{T1,T5,...,T,} to be completed is not known to the robot
in advance, and one task is normally assigned as G at a time.
Completing each T;, e.g., preparing toast, requires a plan of
finer-granularity actions such as grab bread, put-in toaster,

and switch appliance to be computed and executed by the
robot and the human. Completing a subset of these actions
is considered a subgoal. The execution of some actions can
result in failure, e.g., a heavy plate with food on it may be
dropped. Without loss of generality, we limit any such failure
(in this paper) to the human’s actions due to limitations
in their capabilities, e.g., the human may not be able to
lift heavy objects. For effective collaboration, the robot has
to anticipate such failures based on prior knowledge or
observations of the human’s abilities. The robot can then
prevent this failure, e.g., by completing the action instead of
the human, or prepare to address this failure, e.g., fetch a
broom and dustpan to clear the broken plate.

Figure 2 provides an overview of our hybrid framework
for achieving the desired behavior. A robot equipped with
this framework prompts an LLM with current task, prior
knowledge of user preferences and the scene (if available),
and some example task sequences, receiving as output a
sequence of anticipated tasks (Section 3.1). The current and
next task are assigned as a joint goal to the domain-specific
planning component (Section 3.2). Assuming that the domain
state is known after each action’s execution (which is true in
the simulation environment used for testing), domain-specific
planning is formulated as a relational MDP, using RDDL
to model domain-specific knowledge in the form of fluents,
axioms, and a suitable reward structure. The output of this
step is a plan of actions to be executed by the robot and the
human, although the human’s actual action choices may not
match the robot’s expectation. This planning also anticipates
and accounts for failures (Section 3.4) to complete the tasks
reliably. Specific components are described in detail below.

3.1 LLM-based Task Anticipation

In our framework, the I[lama-3.3-70b-versatile LLM
and the Groq API (temperature 0.2, max_tokens =
500) is used to predict the next four tasks likely to
be assigned. At run time, the prompt includes: (i) a
task sample space of 240 grounded household actions
(master_tasks. json); (ii) examples of user sequences
(sequence. json); and (iii) a scene graph of rooms and
objects (virtualhome_categories. json). The user
sequences are sampled from the last three sequences com-
pleted by the user, and are updated across runs. During actual
deployment, these sequences can be updated over time to
adapt prediction to user’s preferences.

We used two prompting strategies: (i) few-shot and (ii)
chain-of-thought [25]. Both strategies consider a predefined
task space and a structured JSON description of the scene
(often kitchen in our experiments) including the locations
of objects and other agents. Specifically, we considered
11 different tasks such as move and grab with multiple
ground instantiations (e.g., move to different locations, grab
different objects). The few-shot approach uses 2-3 prior
observations of tasks completed by user, while the chain-
of-thought method uses two in-context examples with step-
by-step reasoning to infer user activity patterns. With either



LLM-based Prediction
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drink (coffee)', 'wash the dishes']}

- DESTINATION_O(glass_1, table) = true;
Mapping )| pESTINATION_1(salmon, plate_1, table) = true;
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domain.rdd|
pvariables
/1 State fluents like
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then ..
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Fig. 2: Our framework’s pipeline: (a) LLM takes a prompt of task lists, user preferences, scene description, and current
command, to predict upcoming tasks; (b) RDDL description of domain knowledge and joint goals comprising current and
predicted tasks fed to PROST planner; and (c) Plan of actions to be executed by robot and human to achieve the goal,
including robot’s actions to prevent or recover from potential failures due to the human’s actions.

strategy, the LLM’s output is a sequence of anticipated tasks,
which is filtered to remove tasks considered to be invalid. A
snapshot of such prompting and the corresponding output is
shown in the left part of Figure 2; the user asks for salmon
and the LLM predicts subsequent tasks to involve serving
coffee and washing the dishes.

3.2 Task Planning

The JSON snippet is automatically mapped to the cor-
responding RDDL goal through simple template matching
(jsonfiles/rddl_goals. json). The current and the
next (predicted) task (from LLM’s output) are mapped to a
joint goal G. Recall that domain-specific planning to achieve
G is formulated as a relational MDP: (V, A, P, R, H, s¢),
where V' is the set of states, A is the set of finer-granularity
actions (to be executed by robot or human), P is the state
transition function, R is the reward specification, H is the
planning horizon, and sg is the initial state.

In our RDDL domain description, each task 7; is auto-
matically associated with an instance file defining relevant
objects and axioms. These instance files are generated from
a common domain file, encoding variables for states (e.g.,
location of objects, state of appliances) and actions, universal
transition dynamics, constraints, and reward structures that
incorporate auxiliary incentives to guide the robot through
intermediate steps for task completion. This approach sup-
ports modularity, with the domain file being defined once
and the instance files defined based on the tasks at hand.
In addition, subgoals are defined automatically as logically
important stages on the path to any given goal, respecting
necessary preconditions and dependencies between relvant
states actions. Simulated trials validate these subgoals before

they are encoded in the instance files, and used to evaluate
partial achievement of the corresponding goal(s).

The reward function is designed to promote adaptive execu-
tion by trading off between successful task completion and
the effort involved in preventing failures or recovering from
them. Positive rewards are assigned for achieving subgoals
and goals, while redundant or unsafe actions incur penalties.
Additional details about reward specification are in Sec-
tion 3.4, and an experimental analysis of reward sensitivity
is in Figure 5 in Section 4.2. The planner uses these rewards
to generate a fine-grained action sequence by constructing a
directed graph representation of possible states; it initializes
Q-values to guide decision-making, checks reward locks,
ensures that subgoal completion aligns with the overall goal,
and prevents unnecessary delays.

For computational efficiency, the original RDDL description
is factored to obtain (Dg, Dy), where Dr = (Sgr, MR)
is the robot’s description and Dy = (Spg, My, Bg) is
the human’s description. Here, .S defines types, predicates,
and pvariables, while M specifies actions, preconditions,
and effects. For instance, actions like human_pick and
robot_pick modify the state fluent obj-1loc. The model
predicting human behavior By is derived from simulations
with added noise impacting state transitions (see Section 3.3
below). A task instance T = (O, I,G) consists of objects
O, the initial state I, and the goal state G. We use the
PROST planner [10] to compute an action sequence m =
(ay,...,ax) that transitions the system from [ to G as a
combination of actions to be executed by the robot and the
human. This plan computation using a heuristic tree search
method that maximizes expected cumulative rewards.



3.3 Modeling Human Behavior as State Transitions

The model By of human behavior captures the uncer-
tainty in the human’s execution of specific actions. Since we
were using a simulation environment for experimental eval-
uation, we had to simulate such uncertainty using empirical
probability distributions not known to the robot. Specifically,
we introduced noise by sampling from a Gaussian distribu-
tion centered on expected outcomes. The magnitude of this
noise was adjusted automatically based on task complexity
and considered different human behaviors, modeling execu-
tion failures as thresholds driven by specific criteria, e.g., a
human’s attempt to lift an object fails because they are not
able to exert sufficient force. As a result, we were able to
realistically simulate variability in human action execution,
as discussed further in Section 4.1.

Once the noise distributions were determined, observations
from 10 simulated trials of each of 11 cooking and cleaning
tasks were used to learn an initial model of By as the
state transition probabilities Py (s'|s,apy) for any particular
human action ay. These probabilities were refined over
subsequent trials, allowing the robot to predict human action
outcomes more accurately. These probabilities were encoded
in the domain file, and used to consider uncertainty in human
action outcomes during planning and execution.

3.4 Anticipation and Collaboration

A key component of our framework is the reward spec-
ification that helps the robot trade off between completing
the task successfully and the effort involved in preventing or
recovering from potential failures in human action execution.
Figure 3 shows a simplified version of our reward function
for a specific task (prepare breakfast) based on subgoals that
guide the robot toward task completion. Each component of
the reward function models different interactions illustrated
here in the context of tasks in the kitchen:

« Appliance interaction: successfully performing valid
actions, e.g,, open, close, and robot_switch_on on
appliances is rewarded.

o Item collection: preparing for tasks, e.g., picking up
FOOD_ITEM or CONTAINER early, is rewarded.

« Container placement: placing objects at designated
locations, e.g., containers such as plates and bowls in
their DESTINATION, is rewarded.

« Intermediate placement: placing objects in intermedi-
ate locations in preparation for specific tasks, e.g., stove
or toaster for cooking, is rewarded.

o Final delivery: placing an object in its correct goal
location is rewarded.

o Goal fulfillment: satisfying all conditions of the GOAL
receives a high reward.

Similar reward functions are populated automatically for
other actions and tasks in the domain.

We also define a set of rewards that promote anticipatory
and cooperative behaviors by aligning action choices with
capabilities. We illustrate this in the context of humans

D [robot open(?r, ?1) A APPLIANCE(?1) A HAS-SWITCH(?1) A robot-loc(?r, ?1)1",

"+ 20 * [pick(?r, ?f, ?1) A FOOD_ITEM(?f)]",

"4+ 20 * [pick(?r, ?p, ?1) A CONTAINER(?p)]",

+ 5 * [robot_close(?r, ?1) A APPLIANCE(?1) A HAS-SWITCH(?1) A robot-loc(?r, 21)]",

+ 40 * [place(?r, ?f, ?1) A FOOD_ITEM(?f) A DESTINATION_0(2f, ?1

"+ 5 * [robot_switch_on(?r, ?1) N APPLIANCE(?1) A HAS-SWITCH(?1) A robot-loc(?r, 21)]",
"+ 5 * [robot_switch_off(?r, ?1) A APPLIANCE(?1) A HAS- SWITCH(’»‘I) A robot-loc(?r, ?1) )]
+ 40 ut_il ) A FOOD_ITEM(?f) A CONTAINER(?p)]1",

+ 100 * [FOOD_ITEM(?f) A CONTAINER(?p) A food-in(?f, ?p) A GOAL o(2f, 2p, 21)]"

Fig. 3: Partial description of reward specification for the
PrepareBreak fast(Toast) task.

performing pickup actions that are likely to result in failure,
and the actions used to avoid or recover from these failures.

« Reward for preventing failure. This term rewards the
robot for performing an action instead of a human in
an attempt to prevent failure, e.g., pick up fragile items
that a human may potentially drop and break.

Ry= Y

r:robot,
i:item,
I:location

A 3h : human-loc(h, l))

(pick(r, i,1) N fragile(i)

o Reward for preparing to respond to failure. This
term incentivizes the robot to place items that enable it
to respond to failure near locations where a failure may
occur, e.g., place a mop near location of fragile items
that a human may pick up and potentially drop.

Ry=

r:robot,
m:item,
I:location

A 3h : human-loc(h, 1)
A Jz : fragile(x) A obj-loc(z, l))

(mop(m) A obj-loc(m, 1) A robot-loc(r, 1)

« Penalty for not being prepared for failure. This term
penalizes the robot when a human performs an action
that may lead to failure and the robot has not prepared
for it accordingly, e.g., human allowed to pick up a
fragile item without a mop nearby.

Ry=— Y

[:location,
3:item

A Bm : mop(m) A obj-loc(m, l))

(Elh fragile(i) A pick_human(h,i,1)

Rewards can be suitably defined for other actions and do-
mains using knowledge of actions likely to result in failures
or help recover from failures. Each action executed by the
robot also comes with a cost (i.e., negative reward) based
on the effort needed (e.g., time spent, distance traveled) in
completing the action. This allows the robot to trade off
the need to prevent (or recover from) failures and the effort
involved in achieving it.

4 EXPERIMENTAL SETUP AND RESULTS

We experimentally evaluated two hypotheses related to
the performance of our framework.



Task: prepare_breakfast (toast)
P(walk_to_kitchen) = 0.800

P(in_hand | kitchen) = 0.625
P(put_in | in_hand, kitchen) = 0.600
P(switch_on | kitchen) = 0.625

Fig. 4: Example probabilities of state transition probabilities
in human behavior model. The probability of the human:
walking to the kitchen from a random location is 0.8;
grabbing a bread slice while in the kitchen is 0.625; placing
the bread slice in the toaster after grabbing it is 0.6; switching
on the toaster while in the kitchen is 0.625.

H1: Reasoning with learned or encoded models of human
behavior improves performance and collaboration with
a human compared with not using such models.

H2: Incorporating the strategy to anticipate failures enables
the robot to recover better from such failures compared
with not using the strategy.

The experimental setup used for evaluation and the corre-
sponding results are discussed below.

4.1 Experimental Setup

Our experimental setup involved three key components:
learning a stochastic human behavior model, encoding do-
main knowledge in RDDL, and selecting appropriate base-
lines and evaluation measures.

Learning the Human Behavior Model. As stated in Sec-
tion 3.3, we learned a probabilistic state transition model
of human behavior in the VirtualHome simulator by de-
composing tasks into actions and introducing noise sampled
from a normal distribution (x = 0,0 = 0.1) filtered with a
0.50 threshold. For each task, we ran 10 noisy simulations
to compute conditional probabilities over state transitions.
These probabilities also represent preferences (e.g., choosing
fragile instead of non-fragile items) and deviations (e.g.,
leaving a room mid-task). Figure 4 shows probabilities of
outcomes of the human’s actions related to a particular task.

Encoding Planning Models. We modeled the environment
using RDDL as described in Section 3.2. The domain in-
cluded 11 generic household (cooking and cleaning) tasks
based on nine food items, eight appliances, nine cutlery
items, and five cleaning items. Human actions were treated as
exogenous stochastic transitions that (unknown to the robot)
were based on the learned model. We used a predefined
JSON file to map natural language LLM outputs into RDDL-
specific syntax for goals and rewards.

We used the PROST Planner [10], with the Trial-based
Heuristic Tree Search algorithm on a Factored MDP, inte-
grating Upper Confidence Bound for action selection, Un-
solved Monte Carlo for handling uncertainty, Partial Bellman
Backup for Q-value estimation, and Iterative Deepening
Search for heuristic Q-value initialization. We balanced ex-
ploration and exploitation by combining the IPC2011 con-
figuration that supports broad exploration and the IPC2014

configuration that improves decision-making by prioritizing
informative samples. We set a maximum planning horizon of
60 for the joint goal (two tasks) to limit search. Our reward
function rewards task completion and progress, penalizes
delays, and discourages failures (Section 3.4). The planner
generated joint-action (human and robot actions) sequences
that optimize: (a) distance to target: nearest agent handles
the object; (b) action prioritization: robot chooses to perform
interactions with fragile objects; (c) goal relevance: relevant
object types are considered; and (d) plan length: minimal
plan is computed. Recall that human actions are modeled
and observed but are not determined by our framework.

Performance Measures and Baselines. To evaluate H1 and
H2, we performed 30 simulation rollouts, each with five
collaborative tasks in our household domain. Each task was
a high-level goal, such as "Prepare and Serve Toast and
Coffee." This task can be split into subgoals, like "Toast
the Bread," and "Place items on the table." To achieve each
(sub)goal, the robot had to execute a sequence of actions such
as "Open Toaster," "Put bread in Toaster, and " "Switch on
Toaster." Each simulation involved multiple potential failures
in the form of undesired human action outcomes. We used
the following performance measures:

o Average number of actions: the mean number of
actions for completing entire task(s).

« Number of failures: count of failures during execution
of the assigned task(s).

o Number of failures prevented: count of instances of
robot preventing failure in human action outcomes.

o Number of failures recovered: count of instances in
which robot recovered from failure by anticipating it.

o Task completion rate: fraction of tasks completed
successfully; higher value indicates better performance.

e Subgoal completion rate: fraction of subgoals
achieved, measuring adherence to task(s).

Each simulation included robot and human actions such
as pick, place, move, switch, open, and put_in. The
robot evaluated multiple trajectories, optimizing for expected
reward. The environment includes fragile and non-fragile
objects (e.g., fruits, cereal, mop, bread, milk) and dynamic
constraints in the form of obstructions and unavailable items.
As summarized later (in Table II), we assessed the robot’s
ability to: (a) anticipate human delays or mistakes; (b)
recover from missteps such as tool misuse or incorrect object
selection; and (c) adapt to constraints based on rewards that
consider plan length and failed subgoals.

As baselines for comparison, we considered just the LLM
(L) and just the RDDL-based planner (R). Similar to ex-
isting literature [26], the LLM baseline directly computed a
sequence of actions for the joint goal (current and predicted
next task). The RDDL-based baseline did not include the
predictive model of human behavior in its reward specifi-
cation; its reward structure directed the robot to follow a
goal-conditioned plan to complete the task(s).



Task Subgoals completion % Task completion %
(LLM) (RDDL) (Ours) | (LLM) (RDDL) (Ours) ‘
Prepare and Serve Salmon + Water 46.67% 63.3% 85% 30% 55% 80%
Prepare and Serve Coffee + Wash Dish ~ 47.5% 75% 86.7% 20% 55% 87.5%
Prepare and Serve Cereal + Coffee 52.5% 70% 88.3% 25% 60% 85%
Prepare and Serve Toast + Coffee 42.5% 68.3% 83.3% 15% 58.3% 84%
Prepare and Serve Pizza + Wash Dish 35.56% 66.7% 84.2% 10% 57% 83.4%
| Average% 44.55%  6826%  855% | 20% 57.06%  84.718% |

TABLE I: Task and subgoal completion performance of our fr

amework is substantially better than that of the two baselines,

LLM-only and RDDL/PROST without anticipatory rewards, over selected composite tasks.

Task Failures Prevention Recovery Avg. Actions
L R (0] L R (0] L R o L R O
Prepare and Serve Salmon + Water 18/30 17/30 14/30 | 12/30 13/30 16/30 | 6/18 0 11/14| - - 38
Prepare and Serve Coffee + Wash Dish | 9/30  11/30  8/30 | 21/30 19/30 22/30 | O 2/11 6/8 |24 - 26
Prepare and Serve Cereal + Coffee 25/30 13/30 10/30 | 5/30 17/30 20/30 | 9/25 O 810 | — - 42
Prepare and Serve Toast + Coffee 27/30 9/30 12/30 | 3/30 21/30 18/30 | 6/27 O  9/12 | - - 48
Prepare and Serve Pizza + Wash Dish | 18/30 11/30  9/30 | 12/30 19/30 21/30 | 3/18 0 79 | - - 30
| Average | 200 122 106 | 106 178 194 | 48 - 82 | - - 368

TABLE II: Failure prevention and recovery statistics for selec

ted composite tasks. Prevention indicates proactive avoidance

of likely human failures, while Recovery refers to corrective action after failure has occurred. In most scenarios, the LLM-
only baseline (L) or RDDL/PROST baseline (R) failed to complete the composite tasks, with Avg. Actions and Time Taken

3

reported as

4.2 Experimental Results

Table I and Table II summarize results for a set of
representative composite tasks. Our framework (Ours, O)
consistently outperformed the two baselines: RDDL/PROST
without anticipatory rewards (RDDL, R) and LLM-only
plans (LLM, L). For example, in Table I, average sub-
goal completion rate across all tasks was 85.5% for our
framework, compared with 68.26% for the RDDL baseline
and 44.55% for the LLM baseline; substantial performance
improvements were observed for overall task completion as
well. Also, there was considerable variation in the results
obtained with the baselines depending on the type and
complexity of the tasks, whereas the performance remained
consistently good with our framework. In addition, the task
(or subgoal) completion rate was not 100% with our frame-
work only because the robot ran out of time to complete
the tasks; this limit was relaxed for the numbers shown in
Table II below. These results indicate the importance of the
human behavior prediction model and the reward mechanism
that leverages this model.

Table II summarizes statistics of failures, failure prevention,
and recovery across tasks. The robot prevented failures in
many more trials when using our framework than when it
used the baselines; it also recovered from a larger percentage
of the errors that were not prevented. Recall that neither
baseline explicitly reasons about potential failures to prevent
or recover from them. Any prevention of failure or recovery
from failure with our baselines was hence purely happen-
stance, e.g., the robot using the RDDL baseline chose to
fetch the glass of water that a human may have dropped, or
the LLM baseline happened to direct the robot to clear the

—’. Our framework (Q) consistently completes tasks through anticipation and recovery.
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Fig. 5: Task failures as a function of the reward-based
multiplier that determines extent to which failure prevention
and recovery is prioritized over task completion. With an
increase in the multiplier, failures reduce up to a point before
increasing again. A trade off between failure prevention and
task completion leads to good performance.

mess created by the glass of water dropped by the human. As
observed in Table I, there was variation in the performance
of the baselines based on the type and complexity of the
tasks, but the performance remained consistent with our
framework. Furthermore, our framework resulted in tasks
being completed in each trial, including when the robot did
not prevent or recover from errors. With the two baselines,
on the other hand, the tasks remained incomplete in most
trials. These results indicate the robot’s ability to collaborate
effectively with the human; it anticipated and prevented
failures, recovered from failures, and/or found other plans



to complete the task, thus supporting H1 and H2.

We also explored the trade off between task completion and
failure prevention or recovery. Figure 5 presents the number
of failures for different tasks and different reward multipliers;
for a higher value of the multiplier, the reward structure
assigns higher weight to failure prevention and recovery. The
sensitivity of performance to this multiplier depended on the
type and complexity of the task, but the increased focus on
failures improved performance up to a point before having
a negative impact. These results suggest that our reward
structure can be adapted to the tasks and domain.

5 CONCLUSION

This paper described a hybrid framework that enables
a robot collaborating with a human to anticipate upcoming
tasks, reason about potential failures due to actions executed
by the human based on a learned model of their action
capabilities, and to act to prevent these failures or to recover
from them. The framework combines the complementary
strengths of knowledge-based and data-driven methods. In
particular, it combines the LLM-based statistical prediction
and the RDDL-based probabilistic relational sequential de-
cision making capabilities. Experimental results demonstrate
the substantial improvement in performance compared with
LLM-based and RDDL-based baselines. Future work will
explore the use of this framework on a physical robot and
its extension to support multiagent collaboration.
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